MTH 2310, FALL 2011

TEST 2 REVIEW, KEY

Some problems to work on in class today (most of these are even-numbered problems from the textbook):

- (1) True/False: If True, justify your answer with a brief explanation. If False, give a counterexample or a brief explanation.
 - (a) If A and B are 3×3 and $B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}$, then $AB = \begin{bmatrix} A\mathbf{b}_1 + A\mathbf{b}_2 + A\mathbf{b}_3 \end{bmatrix}$. False, should not have plusses.
 - (b) If A is invertible, then the inverse of A^{-1} is A itself. **True**. $(A^{-1})^{-1} = A$ is a property of inverses.
 - (c) Let A be a square matrix. If the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n , then the solution is unique for each \mathbf{b} . **True**. Because of at least one solution we know it is onto, and by the IMT this means it is one-to-one.
 - (d) If A_1 , A_2 , B_1 and B_2 are $n \times n$ matrices, $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ and $B = \begin{bmatrix} B_1 & B_2 \end{bmatrix}$, then the product BA is defined but AB is not. **False**, both are defined.
 - (e) The determinant of a triangular matrix is the sum of the entries on the diagonal. **False**, should be product, not sum.
 - (f) If det A = 0, then two rows or two columns are the same, or a row or column is zero. False, could have one row be a sum of two other rows.
 - (g) A vector space is also a subspace. **True**, it is a subspace of itself.
 - (h) The column space Col A is not affected by elementary row operations on A. False.
- (2) Show that if the columns of B are linearly independent, then so are the columns of AB. (Hint: First, explain why the columns of B being linearly dependent means the same thing as saying that there is a nonzero vector \mathbf{v} such that $B\mathbf{v} = \mathbf{0}$. Now use this to answer the question.)

This is not true, because A could be the zero matrix. The question should read "columns of B are linearly *de*pendent", and then it follows from the hint.

(3) Find the inverse of
$$\begin{bmatrix} 1 & -2 & 1 \\ 4 & -7 & 3 \\ -2 & 6 & -4 \end{bmatrix}$$
.

Put this into a online calculator to check your work. You should do it by hand using the algorithm where you augment it with the identity matrix and then row reduce.

(4) If L is an $n \times n$ matrix and the equation $L\mathbf{x} = \mathbf{0}$ has the trivial solution, do the columns of L span \mathbb{R}^n ? Why or why not?

Not necessarily. If the equation has *only* the trivial solution, then it will span (by the IMT). But all such equations have the trivial solution, and some of them have more.

(5) Let $A = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}$, where *B* and *C* are square. Prove that if *A* is invertible then *B* and *C* must be invertible. (Note: you cannot just invoke the Invertible matrix Theorem, you have to use block matrix multiplication at some point.)

A invertible means there is some block matrix $\begin{bmatrix} X & Y \\ W & Z \end{bmatrix}$ such that $\begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix} \begin{bmatrix} X & Y \\ W & Z \end{bmatrix} = I$. This means that BX = I so B must be invertible, etc.

- (6) Calculate det $\begin{bmatrix} 6 & 3 & 2 & 4 & 0 \\ 9 & 0 & -4 & 1 & 0 \\ 8 & -5 & 6 & 7 & 1 \\ 3 & 0 & 0 & 0 & 0 \\ 4 & 2 & 3 & 2 & 0 \end{bmatrix}$. 9. (7) Use row reduction to find det $\begin{bmatrix} 1 & 3 & 3 & -4 \\ 0 & 1 & 2 & -5 \\ 2 & 5 & 4 & -3 \\ -3 & -7 & -5 & 2 \end{bmatrix}$.
- (8) Let U be a square matrix such that $U^T U = I$. Show that either det U = 1 or det U = -1. det $(U^T U) = det(I)$ implies $det(U^T) \cdot det(U) = 1$. But det $U = det U^T$, so they have to be ± 1 .

(9) Let W be the set of all vectors of the form $\begin{bmatrix} 4a+3b\\0\\a+b+c\\c-2a \end{bmatrix}$. Is W a subspace of \mathbb{R}^4 ? Explain

your reasoning.

Yes it is a subspace because it is the column space of the matrix $\begin{bmatrix} 4 & 3 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \\ -2 & 0 & 1 \end{bmatrix}$.

(10) Consider the following two systems of equations:

 $5x_{1} + x_{2} - 3x_{3} = 0 \qquad 5x_{1} + x_{2} - 3x_{3} = 0$ -9x_{1} + 2x_{2} + 5x_{3} = 1 and -9x_{1} + 2x_{2} + 5x_{3} = 5 4x_{1} + x_{2} - 6x_{3} = 9 4x_{1} + x_{2} - 6x_{3} = 45

It can be shown that the first system has a solution. Use this fact to explain why the second system also has a solution without making any row operations.

Ans: The fact that there is a solution means there exists some $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ such that

$$\begin{bmatrix} 5 & 1 & 3 \\ -9 & 2 & 5 \\ 4 & 1 & 6 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 9 \end{bmatrix}.$$
 Then
$$\begin{bmatrix} 5 & 1 & 3 \\ -9 & 2 & 5 \\ 4 & 1 & 6 \end{bmatrix} (5\mathbf{x}) = 5 \begin{bmatrix} 5 & 1 & 3 \\ -9 & 2 & 5 \\ 4 & 1 & 6 \end{bmatrix} \mathbf{x} = 5 \begin{bmatrix} 0 \\ 1 \\ 9 \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \\ 45 \end{bmatrix}$$

which is a solution to the second system.